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Background  

Nelsonites and Low Ti, FeO deposits in the 
Adirondacks, New York State 
 
El Laco, Chile and the Missouri, USA FeO-REE 
deposits, with Fernando Enrique and Jan Nystrom 
 
6 years Alan Clarks IOCG group, Queens University, 
Canada 
     Jorge Benivides- Manto Verde, Chile 
    Hyong Chen- Marcona , Mina Justa, Peru 
    Greg Lester- Pampa De Pongo, Peru 
Proprietary deposits in Mexico, Canada and 100+ 
million pound REO, IOCG-carbonatite hybrid in 
Mongolia 
 



Observations 

ÅMagmatic-hydrothermal systems 

ÅUsual variations of the typical IOCG alteration/          

alteration/mineralogy themes 

ÅPrimary early FeO stage volatile rich AAFEs (anions or 

anion forming elements) e.g. OH, P, S, F 

ÅExternal or non-primary source of S, and by extension Cu 

and Au 

ÅREE and U might be primary 

ÅGeochemical and textural evidence of primary FeO 

magmas in some cases 

 

 



Experimental approach  

If liquid immiscibility between volatile -rich  FeO and SiO2 

dominated melts might be involved in the genesis of IOAs or 

IOCGs, what should be determined and considered? 

 

Å Pressure, temperature and chemical stability fields of two 

melt systems.  

ÅDetermine the partitioning of major elements, REEs, 

metals, and other trace elements, and stable isotopes.  

ÅThe melts should be H2O-rich and characterize the effects 

of P, S, Cl or F on phase stability and element enrichment 

ÅVariable fO2, QFM, NNO, MH 

 

 



>200 experiments 
T-X- 7  base mixtures (~basaltic andesite-granite comp.) + H2O +P,S, F, or S 

Part.-  base-mixture + 10 wt% H2O + 6.67 x 10-4 mol/g P, S, F, or Cl + trace 

elements (peraluminous, An50) 

 



Experimental charge: Si-Al-K-Fe-O + 
H2O+ P, S, F or Cl, + trace elements 

2mm Pt  
inner 
capsule 

5mm Pt  
outer 
capsule 

External buffer + H2O 
(QFM, MH, NNO) 

Experimental configuration 



Quench 

orientation 

Run orientation 

Stellite bomb 

Rotating, rapid-quench  

IHPV  
Argon pressure media 

Argon density at 200 MPa ~ density water at 1 atm. 

  

 blast shield 



Experimental product for analysis: phase assemblage (microscopy, B.S.E), 

major and trace element (W.D.S., ICP-ms) and isotope (IR-ms) partitioning 

1 mm 1 mm 

                                                                                                      trans. light                                                                                                                              refl. light 



B.S.E. images of conjugate immiscible melts 



Experimental results for H2O + P 

L - liquid 
M - magnetite 
Sil - silica mineral 



Experimental results for H2O + S 

L - liquid 
M - magnetite 
Sil - silica mineral 

Sil 



Experimental results for H2O + F 

+ Sil 

+ sil? 

L - liquid 
M - magnetite 
Sil - silica mineral 



Element Partitioning as a Function of Polymerization 

      Fe                                                                                 P, S, F 

Si, K 

Immiscible melt inclusions 



Effect of  H2O, P, S, and F on miscibility gap 

Anhydrous and basaltic data from Bogaerts and Schmidt, 2006 



Summary of results and interpretation-P-T-X stability 
1. FeOx-SiO2 volatile rich immiscible melts are stable over a broad melt 

composition range, at geologically reasonable temperatures 1000-

1200 Co (800 Co  sub-liquidus). 60-80 wt% FeO FeO-rich melt, 

andesitic-granitic silicate melt  

 

2. H2O, P, S, F extend T lower, expand composition field, Cl-limited  

 

Mechanisms 

Crystal fractionation, magma mixing, partial melt, assimilation 

 

Geological Settings 

High H2Oéé.. Arc and back-arc  are very permissive, especially with 

deep faults as conduits. 

Shallow crustal magma chambers (late LLD, volatile saturation near and 

sub-liquidus, also magma mixing) 

Mid cratonic- Volatile source? Low volatile IO?, IOA 

 

 



Pressure and two-melt stability in the supra-subduction zone. 

ñmagma factoryò 

Flux-melting model from Grove et al.,  2006 


